
Summations and Recurrence Relations1

CS331 and CS531

Design and Analysis of Algorithms

Ajay Gupta

Don Nelson

Version 1: January 3, 1992

June 26, 2003

1Note: These are informal notes that are to be used only as a supporting mate-

rial. Use them at your own risk. Please report any errors and typographical mis-

takes to Ajay Gupta (gupta@cs.wmich.edu) or Don Nelson (nelson@cs.wmich.edu).



1 Math Preliminaries

Below you will find some formulae that are useful for analysis of algorithms.

The list is by no means exhaustive, rather it is designed to give you a flavor

of different ideas we may need.

Conventions

• ∀ ⇐⇒ for all symbol.

• ∃ ⇐⇒ there exists symbol.

• 0! = 1.

• x0 = 1.

• loga1 = 0, for all a > 0.

• log y ⇐⇒ base two log of y when no explicit base is indicated; ∀y ≥ 1.

•
y∑

i=x

f(i) = 0 if x > y.

•
x∑

i=x

f(i) = f(x).

Logarithms

• logx y = z ⇐⇒ xz = y;∀x > 1.

• xlogx y = y;∀x > 1.

• logx(a× b) = logx a + logx b;∀x > 1 and a, b > 0.

• logx
a
b

= logx a− logx b.∀x > 1 and a, b > 0.

• logx a =
logy a

logy x
;∀x, y > 1.

1



• alogx b = blogx a;∀x > 1.

• logx ab = b logx a.

Powers

• ab × ac = ab+c.

• ab

ac = ab−c.

• (ab)c = abc.

• ac × bc = (ab)c.

2 Series Sums

In this section we will consider a number of examples of various series that

occur often during solutions of recurrence relations and frequency counting.

The sum (
∑

) notation is often used to denote a series in more succinct form

and hence let’s first start by understanding this notation. In general,
y∑

i=x

f(i)

denotes the longer form f(x) + f(x + 1) + f(x + 2) + · · · + f(y − 1) + f(y)

where y, x are integers, y > x and f(·) is some function. Observe that f(·)
terms occur y − x + 1 number of times and i is called a running variable of

the sum. Here are some useful facts about the sum notation.

•
y∑

i=x

f(i) =
y∑

j=x

f(j) =
y∑

k=x

f(k). In other words i, j, k are simply dummy

variables. (Pause: Compare the longer forms of the sum’s!!)

• If f(·) is a constant function as far as its dependence on the running

variable goes (e.g. i, j, and k), then
y∑

i=x

f(a) = f(a)
y∑

i=x

1 = (y − x + 1)f(a),

for any a 6= i.

2



•
y∑

i=x

(f(i) + g(i)) =
y∑

i=x

f(i) +
y∑

i=x

g(i) for some functions f and g.

(Pause: Is
y∑

i=x

f(i) +
y∑

k=x

g(k) =
y∑

i=x

(f(i) + g(i))?)

(Long Pause: Is
y∑

i=x

(f(i)× g(i)) = (
y∑

i=x

f(i))× (
y∑

i=x

g(i))?)

•
y∑

i=x

(g(j)× f(i)) = g(j)×
y∑

i=x

f(i) whenever g(j) is not a function of the

running variable i.

•
y∑

i=x

f(i) =
z∑

i=x

f(i) +
y∑

k=z+1

f(k);∀z such that x ≤ z ≤ y.

2.1 Arithmetic-Like Series

Let’s consider the series of the form
n∑

i=1

ik for some positive constant k, and

try to establish “closed forms” represented by these. We know that
n∑

i=1

1 = n

(why?). How about
n∑

i=1

i ? This series represents sum of the first n natural

numbers. Let’s first consider the case when n is an even integer. If we add

the first and last number we get (1 + n), add the second and the second-last

number we get (2 + (n− 1)) = (1 + n) and add the third and the third-last

number we get (3 + (n− 2)) = (1 + n). Continuing in this fashion, it is easy

to see that we need to add a total of n/2 pairs each one resulting in a sum

of (1 + n). Hence, one can say that
n∑

i=1

i =
n(n + 1)

2
for even n.

(Pause: What happens when we use a similar strategy but n is odd?)

Now, suppose that we claim
n∑

i=1

i =
n(n + 1)

2
for all n > 0. How can we

be sure that in fact our claim is correct? One way to make sure is to use

mathematical induction. So, let’s try it.

3



For n = 1, 2 we can easily verify that our claim is true and hence our

claim holds for the base case. Now by induction hypothesis (IH) assume that
k∑

i=1

i =
k(k + 1)

2
for all values of k < n. We need to prove that our claim

holds for k = n. We know that
n∑

i=1

i =
n−1∑
i=1

i + n

= (n−1)((n−1)+1)
2

+ n use IH with k = n− 1

= n(n+1)
2

Let us now consider the series
n∑

i=1

i2. In order to find a closed form for

this series, we illustrate a method which is also applicable for finding closed

forms for the series
n∑

i=1

ik for k > 2. It is easy (why?) to verify that

n∑
i=1

(i + 1)3 −
n∑

i=1

i3 = (n + 1)3 − 1 (1)

We first expand the left-hand-side (LHS) of equation 1 so that terms involving

only i2, i and 1 remain. We thus have

n∑
i=1

(i + 1)3 −
n∑

i=1

i3 =
n∑

i=1

(i3 + 3i2 + 3i + 1)−
n∑

i=1

i3

=
n∑

i=1

i3 + 3
n∑

i=1

i2 + 3
n∑

i=1

i +
n∑

i=1

1−
n∑

i=1

i3

= 3
n∑

i=1

i2 + 3
n∑

i=1

i +
n∑

i=1

1 (2)

Now, using equation 2 and the right-hand-side (RHS) of equation 1, we obtain

3
n∑

i=1

i2 + 3
n∑

i=1

i +
n∑

i=1

1 = (n + 1)3 − 1 (3)

=⇒ 3
n∑

i=1

i2 = (n + 1)3 − 1− 3
n∑

i=1

i−
n∑

i=1

1 (4)

4



=⇒
n∑

i=1

i2 = ((n + 1)3 − 1− 3n(n + 1)/2− n)/3

= n(n + 1)(2n + 1)/6

Break: Try to generalize above strategy to find a closed form for
n∑

i=1

i3.

Long Break: Try to find a closed form for
n∑

i=1

ik for k > 3.

2.2 Geometric-Like Series

Suppose that we have a series of the form
y∑

i=x

ci for some constant c. These

kind of series are known as geometric series. Following is one way to find a

closed form for these. Let S denote the closed form, then

S =
y∑

i=x

ci (5)

c× S = c×
y∑

i=x

ci

=
y∑

i=x

ci+1

c× S =
y+1∑

i=x+1

ci (6)

Subtracting equation 5 from equation 6, we obtain

(c− 1)S =
y+1∑

i=x+1

ci −
y∑

i=x

ci

= cy+1 − cx

=⇒ S = (cy+1 − cx)/(c− 1)

Let k be a positive constant and c be a constant. How about a series of

5



the form
n∑

i=1

(ik × ci) which looks similar to a combination of an arithmetic-

like and a geometric series? We now describe a method which helps us in

finding a closed form when k = 1; i.e., closed form for the series

n∑
i=1

ici. (7)

We can first use a strategy which is similar to the one for geometric series

and then strategy similar to the one for arithmetic-like series. Let S again

denote the closed form for the series 7. We have:

S =
n∑

i=1

ici (8)

c× S = c×
n∑

i=1

ici

=
n∑

i=1

ici+1

c× S =
n+1∑
i=2

(i− 1)ci (9)

Subtracting equation 8 from equation 9, we obtain

(c− 1)S =
n+1∑
i=2

(i− 1)ci −
n∑

i=1

ici

= (ncn+1 +
n∑

i=2

(i− 1)ci)− (
n∑

i=2

ici + c)

= ncn+1 − c + (
n∑

i=2

(i− 1)ci −
n∑

i=2

ici)

= ncn+1 − c +
n∑

i=2

(i− 1− i)ci

= ncn+1 − c−
n∑

i=2

ci

= ncn+1 − c− (cn+1 − c2)/(c− 1)

=⇒ S = (ncn+1 − c)/(c− 1)− (cn+1 − c2)/(c− 1)2

6



Long Break: Try finding closed form for
n∑

i=1

i2ci.

3 Recurrence Relations

Suppose that T (n) represents the cost of performing an algorithm on a data

set of size n. Often T (n), when originally constructed, will not be in some

“closed form” representing a function of n, rather, it will be given in terms

of one or more values of T (k) for values of k smaller than n. Consider the

following examples:

T (n) =

 1 if n = 0,1

T (n− 1) + T (n− 2) if n > 1
(10)

T (n) =

 1 if n = 0, 1

T (n/2) + n if n > 1
(11)

T (n) =


c if n = 1

c +
n−1∑
i=1

T (i) if n > 1
(12)

Equation 10 is given in terms of the previous two terms; equation 11 is given

in terms of the value of T at n/2; and equation 12 is given in terms of all

the preceding values of T . The last equation is referred to as a full history

recurrence relation.

Whenever such recurrence relations represent the cost of performing an

algorithm, it becomes important to establish a bound on T as a function of

n, the size of the problem. For example, can we establish a bound on T (n) if

T is given by equation 10? It is easy to show using mathematical induction

that 2n is a bound. First observe that T (0) ≤ 20 and T (1) ≤ 21. Thus, we

7



have the basis for an inductive proof. Now suppose that T (k) ≤ 2k for all

k < n. Then

T (n) = T (n− 1) + T (n− 2)

≤ 2n−1 + 2n−2

< 2n−1 + 2n−1 (13)

= 2n

Note that in the inequality expressed in 13 the value of 2n−2 was over

estimated by 2n−1 (a factor of 2). This is a rather coarse estimate, and it

might lead one to suspect that a better bound could be found. In fact that

is the case. It can be shown that there is a constant c such that T (n) < cλn

where

λ =

√
5 + 1

2
= 1.618 · · ·

Next we will look at equation 11 and try an upper bound on T (n), say

n2. In this case we will restrict our values of n to powers of 2. In other

words, can it be shown that T (2p) ≤ 22p for p = 0, 1, 2, . . . ? Here we can

use induction on p. Observe that T (1) = T (20) = 20, so it is true for p = 0.

Assume that it is true for p = k. Then

T (2k+1) = T (2k) + 2k+1

≤ 22k + 2k+1

< 22k + 22k (14)

= 22k+1

< 22k+2 (15)

8



= 22(k+1)

Again, notice in the inequalities 14 and 15 that extremely coarse over-

estimates were made. As was the case with the estimate for equation 10,

this might lead one to suspect that the bound we are considering is much

too large. Let’s try a smaller bound. Can we show that T (n) ≤ 2n− 1. It is

certainly true for n = 1 = 20. Assume that it is true for n = 2k. Then

T (2k+1) = T (2k) + 2k+1

≤ 2× 2k − 1 + 2k+1

= 2× 2k+1 − 1

As a final observation about this last bound, note that it is easy to show

that T (n) = 2n − 1; i.e., we can find an exact solution (for powers of 2)

instead of merely finding an upper bound.

In each of the examples that we have considered, an upper bound was

proposed, and then shown to work. Other guesses can also be made, but it

may be difficult or impossible to establish that the proposed bound is actually

a bound. For example, could you show for equation 11 that T (n) ≤ c×log2 n?

3.1 The Iteration Method

Establishing whether or not a given function represents a bound for a re-

currence relation is one thing, but coming up with a reasonable bound is

another. In the following material we will use the method of expanding a

recurrence relation in order to arrive at a solution or a bound. To see how

this method works, let’s consider again the recurrence relation given in 11.

Suppose that n = 2p for some integer p. To expand the relation, we will start

9



with n and work our way down, step by step, until a pattern can be seen.

T (n) = T (n/2) + n

= T (n/22) + n/2 + n

= T (n/23) + n/22 + n/2 + n
...

= T (n/2p) + n
p−1∑
i=0

1/2i

= 1 + n
p−1∑
i=0

1/2i

= 1 + n
1− (1/2)p

1− 1/2

= 1 + 2n(1− (1/n))

= 1 + 2n− 2

= 2n− 1

Next we will illustrate another expansion to solve the following recurrence

relation.

T (n) =

 c if n = 1

2T (n/2) + cn2 if n > 1
(16)

As was the case with the first expansion above, we will assume that n = 2p

for some integer p. Then the expansion proceeds as follows.

T (n) = 2T (n/2) + cn2

= 2(2T (n/22) + c(n/2)2) + cn2

= 22T (n/22) + cn2(1/4 + 1)

= 22(2T (n/23) + c(n/22)
2
) + cn2(1/4 + 1)

10



= 23T (n/23) + cn2(1/16 + 1/4 + 1)

= 23(2T (n/24) + cn/23)
2
) + cn2(1/16 + 1/4 + 1)

= 24T (n/24) + cn2(1/64 + 1/16 + 1/4 + 1)
...

= 2pT (n/2p) + cn2
p−1∑
i=0

1/4i

= c2p + cn2
p−1∑
i=0

1/4i

= cn + cn2 1− (1/4)p

3/4

= cn + 4cn2/3(1− (1/4)p)

= cn + 4cn2/3(1− 1/n2)

= cn + 4c/3(n2 − 1)

= c(4n2/3 + n− 4/3)

Note that in each of the above expansions, we continued to apply the

recurrence relation until a recognizable pattern was reached, and at that

point we jumped all the way to the pth step. It would take an inductive

argument to prove that such a jump is legitimate. To actually verify that

the expressions we derived are solutions, one should really show by induction

that the solution is valid for all powers 2p. The induction can be done on p.

3.2 The Master Method

For an another expansion, consider the following recurrence relation.

T (n) =

 c if n = 1

aT (n/b) + cnk if n > 1
(17)

11



This relation is similar to those expanded above; however, we observe that it

is expressed in terms of the general parameters, a, b, c and k. We will proceed

to expand this in the same way; however, we will obtain only upper bounds

rather than exact solutions. At one point in the expansion, we will find it

necessary to consider cases which depend on the parameters a, b, and k. Let
n
bp = 1 for some p > 0.

T (n) = aT (n/b) + cnk

= a2T (n/b2) + acnk/bk + cnk

= a2(T (n/b2) + cnk(a/bk + 1)

= a2(aT (n/b3) + cnk/b2k) + cnk(a/bk + 1)

= a3T (n/b3) + cnk((a/bk)
2
+ a/bk + 1)

...

= apT (1) + cnk
p−1∑
i=0

(a/bk)
i

= cap + cnk
p−1∑
i=0

(a/bk)
i

The sum in the last equation above represents a geometric series, so its

growth is dependent on the ratio (a/bk). To estimate the growth of T (n) we

will consider three cases for the ratio.

Case 1 (a < bk)

In this case
p−1∑
i=0

(a/bk)
i
is bounded by 1

1−a/bk , which we will denote by G.

Thus we can write

12



T (n) ≤ cap + Gcnk

= calogb(n) + Gcnk

= cnlogb(a) + Gcnk

< cnk + Gcnk

= O(nk)

Case 2 (a = bk)

In this case
p−1∑
i=0

(a/bk)
i
= p = logb(n) , and we can write

T (n) = cap + cnk logb(n)

= cnlogb(a) + cnk logb(n)

= cnk + cnk logb(n)

= O(nk logb(n))

Case 3 (a > bk)

In this case 1
a/bk−1

is a positive constant, which we will denote by H. Then

p−1∑
i=0

(a/bk)
i

=
(a/bk)

p − 1

a/bk − 1

and hence:

13



T (n) = calogb(n) + c(a/bk − 1)
−1

nk(ap/nk − 1)

= cnlogb(a) + cHnlogb(a) − cHnk

= O(nlogb(a))

Given a recurrence equation in the form of equation (8), we now can

quickly find the order of growth by considering a/bk and applying the ap-

propriate case. This, of course, only gives the order of growth and does not

produce an exact solution.

3.3 Full History Recurrence Relation

We will now consider one final example, namely that of a full history recur-

rence relation. This particular equation will arise when we study the average

case performance of quicksort. The equation is:

T (n) = (n− 1) +
2

n

n−1∑
i=1

T (i) (18)

with T (1) = 0. We first eliminate the summation in the following way. First

consider equation 18 and multiplying both sides by n we obtain:

nT (n) = n(n− 1) + 2
n−1∑
i=1

T (i) (19)

Now, replacing n by n+1 in equation 18 and then multiplying both sides by

(n + 1) we get:

T (n + 1) = n +
2

n + 1

n∑
i=1

T (i)

(n + 1)T (n + 1) = n(n + 1) + 2
n∑

i=1

T (i) (20)

14



Subtracting equation 19 from equation 20 and solving for T (n + 1) yields:

(n + 1)T (n + 1)− nT (n) = 2n + 2T (n)

T (n + 1) =
2n

n + 1
+

n + 2

n + 1
T (n) (21)

Notice that Equation 21 now gives T (n + 1) in terms of T (n). As before,

we will attempt to expand based on 21, only the method will be somewhat

different than that used for the previous recurrence relations. We first make

an observation about the term 2n/(n+1) in equation 21. It is bounded above

by 2, and as n becomes large, it is very close to 2. By replacing 2n/(n + 1)

with 2, we can convert the equation to an inequality and have a system that

is much simpler to solve. Since our main concern will ultimately be to find

a bound on the growth of T (n), this substitution will not defeat our goal.

T (n + 1) <
n + 2

n + 1
T (n) + 2

=
n + 2

n + 1
(
n + 1

n
T (n− 1) + 2) + 2

=
n + 2

n
T (n− 1) +

2(n + 2)

n + 1
+ 2

=
n + 2

n
(

n

n− 1
T (n− 2) + 2) +

2(n + 2)

n + 1
+ 2

=
n + 2

n− 1
T (n− 2) + 2(n + 2)

2∑
i=0

1

n + 2− i

=
n + 2

n− 1
(
n− 1

n− 2
T (n− 3) + 2) + 2(n + 2)

2∑
i=0

1

n + 2− i

=
n + 2

n− 2
T (n− 3) + 2(n + 2)

3∑
i=0

1

n + 2− i

...

15



=
n + 2

n− p + 1
T (n− p) + 2(n + 2)

p∑
i=0

1

n + 2− i

Letting p = n− 1 we obtain

T (n + 1) ≤ n + 2

2
T (1) + 2(n + 2)

n−1∑
i=0

1

n + 2− i

= 2(n + 2)
n−1∑
i=0

1

n + 2− i

= 2(n + 2)
(

1

3
+

1

4
+

1

5
+ · · ·+ 1

n + 1
+

1

n + 2

)
= O((n + 2) log2(n + 2))

= Θ((n + 1) log2(n + 1))

16



Exercises

1. Find an exact solution for:

T (n) =

 c if n = 0

2T (n/2) + cn if n > 1

2. Expand and find a bound for the following recurrence relation. Then

check how your answer compares with the solution to the general case

we derived.

T (n) =

 c if n ≤ 2

7T (n/2) + cn2 if n > 2

For each of the recurrence relation given below, first using the expan-

sion/iteration method find a close upper bound, and then prove by

induction that your solution is correct. Assume c and k are constants.

3.

T (n) =

 c if n = 1

T (n
2
) + c log n if n ≥ 2

4.

T (n) =

 c if n = 1, 2

2T (n
2
) + c log n2 if n ≥ 3

5.

T (n) =

 ck if n = 1

4T (n
2
) + c log n if n ≥ 2

6.

T (n) =

 c if 1 ≤ n ≤ 2

T (n
2
) + cn if n ≥ 3

17



7.

T (n) =

 c if n = 1

3T (n
2
) + cn if n ≥ 2

8.

T (n) =

 c if n = 1

2T (n
2
) + cn log n if n ≥ 2

9.

T (n) =

 c if n = 1

3T (n
2
) + cn log n if n ≥ 2

10.

T (n) =

 c if n = 1

T (n
4
) + cn log n if n ≥ 2

11.

T (n) =

 c if n = 1, 2, 3, 4

T (n
2

+ T (n
4
) + cn if n ≥ 5

18


